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ABSTRACT 

This report clarifies the nature of the dispersion relation for 
space-charge waves in IMPATT diodes. It is demonstrated 

that, in the usual linear approximation, the dispersion rela- 

tion is always cubic, although suitable transformations of the 
basic equation appear to yield a quadratic. The implications 

of this point are discussed in regard to prior results and for 

a simple,  but tractable,   generalization of these results. 

In addition, possible implications for the TRAPATT-AHP 
controversy concerning the explanation of anomalous mode 
operation of avalanche diodes are discussed. 
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DISPERSION    RELATIONS    FOR    IMP ATT    DIODES 

This report is concerned with a clarification of the basic nature of IMPATT wave dispersion 

relations which apparently are not widely appreciated,   along with a generalization of some prior 

results.    In the first section,  three alternative sets of basic equations will be derived and 

discussed. 

I.       BASIC   EQUATIONS 

One basic set of equations for one-dimensional interactions is the continuity equations for 
7 

electron and hole currents along with the Poisson equation.    These are 

•- = i_2. + on|V    |  +/»p|v   |       , (1) 
at       q   8x '    n '        ^'    p' 

% =~ 2&. +an|V   | +/8p|V   |      , (2) at q     3x '    n '        r '    p ' 

_Ji=3.(No_Na) + |(p-n)       . (3) 

where ,1    = — qnl V   I  and ,1    = — qplv   I  are the electron and hole current densities,   n  and   p  are n       n   '   n1 p       nr'   p ' 
the electron and hole densities, q  is the electronic charge,    V   I  and  |V   I  are the magnitudes of -i &      i    n p 

the electron and hole velocities,  a  and  /3  are the electron and hole ionization rates, N    and X 
o a 

are the time-invariant donor and acceptor densities as determined by the material doping,   i    is 

the permittivity,   and E    is the electric field.     This set involves three equations and three un- 

knowns (n. p, E   ),   and hence the dispersion relation can be expected to be cubic when the equa- 

tions are linearized. 

A second set can be derived in at least two ways.     In the first way,   Eq. (2) is subtracted 

from Eq. (1) to yield 

%££*! s ± -L (j   + j ,     . 
at q  ax      n       p 

It' Kq. (3) is differentiated partially with respect to time,   the result is 

i li 

a2 E 

Substituting Eq.(5) into Eq. (4),   we obtain 

a2E 

« ari + h (Jn + V = °    • (61 

which may be partially integrated with respect to x to yield 

pEx 
n        p at T 

where .!„,   called the total current density,   represents the sum of the particle and displacement 

current densities and is solely a function of time.    Equations (i),   (2),   and (7) constitute the al- 

ternative set of three equations in three unknowns (n, p, K   ) for which a cubic dispersion relation 

is expected when Ihe equations are linearized.    The second method of derivation recalls that the 

Maxwell equations. 



_     _     _       _ BE 
V x H = J    + J    +  e  — 
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(8) 

(9) 

must be applicable to E    in Eq. (3).     Taking the divergence of Kq. (8),   we obtain 

V • 
DE   I 

J    + J    + i  —-    = 0 
n      p at 

(10) 

because V •   V x H = 0 is a vector identity.    For one-dimensional interactions (V = x     r—,   E 
A        — A        — A °    <X 

Ex,J    = J  x  ,   J    =Jx),   Eq. (10) becomes Eq. (6) and hence Eq. (7). x o      n       n o      p       p o        M n «  / n      i 
In the small-signal time-harmonic case where 

E    = E    + E,  e 
x        o        1 

jwt (11) 

jut 
J    = J        + J  , e 

n        no nl 

J    = J        +J   t  e^ 
p       po pi 

(12) 

(13) 

a - a    + a'   E, e 
o        o    1 

j«t (14) 

a    s fl'(Eo)      ,       a1  = [da/dE]„  „ 
o o JE=E 

the equations for the time-harmonic components are 

an 
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lix 
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P1-n1 (17i 

(where e.  = a  nA\ V    |  + /J  p. I V   |+ci''E.N   |V   I  + /i' E.P   | V    I) or Eqs. (1 S),   (16) and 61 o  1      n1 o^l '    p1 ol    o1    n1 olo1    p1 

J„.  = J   .   + J   .   + jc'e  E, 
Tl        nl        pi     J 1 

(181 

(where 8JT. /£x = 0).     It is important to note that Eq. (17) can be derived from Eqs. (15),   (16), 

and (18).    This could not be done in the large-signal case because Eqs. (1),   (2),   and (6) combine 

to give 

 x  _   q  a(p - n) 
9x at      t      at 

which integrates to 

8E 

ax i (p- n) + F(x) 

where F(x) is an unknown function [unknown because information not contained in Kqs. (1),   (21, 

and (6) must be invoked to prove that F(x) =  (q/e) (N    — N. )]. 
o        a 



Some investigators regard the derivation of Eq.(17) from Eqs. (15),   (16),   and (18) as indica- 

tion that there are only two independent equations (Eqs. (15) and (16)) and hence that the disper- 

sion relation must be quadratic.     They apparently neglect to include Eq. (18) in their equation 

count.    It is the form of the third alternative set of equations,   which we now derive,   which ap- 

parently encourages the preceding mistaken belief. 

If Eq. (17) is differentiated with respect to  x  to obtain 

02E i]   El        q/!£l_!^\ 
ax2   "  «  V"x       9X/ 

(19) 

and Eqs. (15) and (16) are substituted in Eq.(19),  the result is 

+ 23. (a < N    -i 
02E, 

ax 

+ a i" 
\\ 

In the very special case where 

:vJ = iv I = 

P   ) E 
o 1 

J_ 
i'V ""o 1 + 

V 
P 

V n 

1 + 
V 

n 
V 

P 
»i   ' 

(20) 

then 

where 

a2E, 

ax 
AE„ M.I 

Tl 
(21! 

\« \ s / \   o  no        o  po        \ g •' o / 

are constants if E    and hence a  ,   ,3 , 
o o      o 

(i '   and p"   are independent of x  as in the case of a PIN 

configuration.    Mecause Eq.(21) is a second-order,   inhomogeneous differential equation for   E, 

some investigators    take this as further evidence that the dispersion relation must be quadratic. 

This view overlooks the point that the solution to Eq. (21) will include a constant term (i.e.,   in- 

dependent of x) due to the presence of the constant "forcing function," M.I in the differential 

equation.    This constant term in the solution corresponds to the K = 0 root (when substituted into 
— ) l\x e ) of the cubic dispersion relation.     If the cubic dispersion relation did not possess a K      0 

root,   the reduction of the system of three equations [Eqs. (15),   (16),   and (17)] to the single second- 

order differential equations,   Eq. (21),   would not be possible.    Thus,   the solutions to the three 

coupled first-order equations have the form 

(VPJ.EJ) = 
-jK.x -lK,x 

E.e =A,e + A,e l 1 2 

l      1 

jK2x -jK x 
+ A,e (22) 



which,   if one uses the information that K,   = 0.   becomes 
1 

{nj.P4.E4}  = A4  +A
2

e + A
3
e 

JK3x 
(23) 

which is the form of the solution for Eq. (21).    The basic third-order,   homogeneous differential 

equation is derived in the Appendix. 

II.     DISPERSION   RELATION 

Manasse and Shapiro   have explored,   at length,  a generalization of Misawa's dispersion 
2 

relation    which is more physically realistic,   while still remaining tractable,   because it takes 

into account the difference in electron and hole parameters.    This dispersion relation is 

K2 K2d +K[ (1 - d) + ja  d(C - 1)] + 
o'.I   (1  + d) 

o o  
tV 

(«/Vg)   -jwaQ(i +cd)/Vg 

where it has been assumed that ,T    = qv(n    + cdP   ) 
o     n      o o 

= 0 

constant,   and 

(24) 

PL 
= d V =   V (2S) 

However,   Manasse and Shapiro ignore the double root at K = 0,   of Eq.(24),   and do not regard it 

as part of the true solution.    Rather they,   as well as others,   considered it to be quadratic,   ap- 
\ 

parently for some of the reasons discussed in the first section. 

We consider now,   briefly,   a simple and tractable generalization of the preceding results. 

We note,   from Sze and CUbbons,   that a' /a    need not equal #' //>   ,   and in fact differ bv a factor 
00 00 

of approximately two for silicon.    Thus,   from Eqs.(15),   (16),   and (17),   we find for traveling- 

wave solutions 

i(d;t-Kx) 
e 

that 

k     K  d + K rr-  (d - 1) + jd(o 
V J       o 

/Vl) •(«/V )' 

+ (rv' J       + B' .1     ) (1  + d)/< V 
o no        o po s l(f)(V-„>)|     = ° (26) 

where V    =  |v    i  =   |V    i/d.    When a  //J    = at'/B  ,   Eq. (26) reduces to Eq.(24) except for an extra 
s'np 00        00 

factor Oi'  cl   in the third term, . . . + jd(rv    + ft d)|,   of the left-hand side of E'q. (26) whose absence J       o       o 
in Eq. (24) is presumably due to a typographical error.    The solutions to Eq. (26) are 

K = 0       , (27) 

and 

K = 
2 V d 

s 
(d - 1)  t i 

I      -Ml A O O J_ 
2 2d V"  (d~ *' +J<"o R  d) d 

+ 4d 
(tt',1        t /,",!      ) (1   + d) 

o no        o po  
(w/V ) s 

i(w . V  ) (l<  (' + cv   ) 'So o 

1/2 
(28) 



The inverse dispersion relation,   w = g(K) is obtained from 

w    + w[i(S d + o   ) + K(d- 1)] V   + 
1,1      O O 3 

(1 + d) 
V 

(o'J      + fl'J     ) o no       o po 

+ jKd(a    - /3 d) + K2d| V2 = J o        o (29) 

A description of a ' .1       + /3'J     ,   given J .   ,   is required to make use of the above.    This requires 
' o no       o po    * dc n ^ 

a straightforward generalization of the argument given in Appendix II of Ref. 3.    The result is 

from an averaging procedure for the dc results and yields for «'.]    + tf'.I      = G, h   b r * o n       o po 

G  ^   or1 J .  [1 + (f -) (1 - l/rv  L)] o  dc' 1 — c o 
i 30) 

where c = ft   /n   ,   e = IV /n' ,   and   1.  is the length of the avalanche region.    When e = c,   the result o     o o    o 
reduces to Manasse and Shapiro's J    = ,T ,   let   L. 

o        dc      o 
The preceding result was obtained by using rv',1       + li      = o'[J .    + (e — 1) J     1 (recall that , J o no        po o'   dc po1 

.1 ,    = .1       + .1     ),   and3 

dc        no        po 

po 

(rv   -II   )L        (O'  -ji  )x o    o                o    o e - e  
(<•>'   -ft   )L 

o     o . e — 1 

i 31 

G 
.' o 

+ /3' J     ) dx 
no       o po 

(32) 

/3   /a    ~ e o     o 

•{a  -li   )L 
o    o (at breakdown) 33! 

III.   CONCLUSIONS 

We consider now the application of some of the preceding results to a controversial topic. 

It has been demonstrated that IMPATT diode operation is described by a third-order homoge- 

neous,  differential equation which gives rise to a cubic dispersion relation.    This conclusion is 
i 

contrary to the widely held belief,   by workers in the field,   that the basic equation and resulting 

dispersion relation are of second order.    This distinction does not appear to be of practical im- 

portance for small-signal theory of IMPATT diodes,   since all three roots of the dispersion re- 

lation (0, +k    , — k    ) are used in practice by evervone to calculate diode properties. 
m        m ••  '      r 

There may be important consequences in large-signal avalanche diode theory.    At the pres- 

ent time,   proponents of the TRAPATT mode theory    (as an explanation of anomalous mode ava- 

lanche diode behavior) argue that they have solved the general system of equations by computer 

simulation and see only TIIAPATT mode operation.    Other workers    claim that there exists an 

additional high-efficiency mode,   avalanche-resonance pumped (AHI'I,   which they obtain ex- 

perimentally and which does not have the waveforms (of .1    and voltage vs time) predicted by 

TRAPATT theory. 

The solution to the controversy may lie in the observation that the computer simulations of 

TRAPATT mode operation assume given waveforms for .!„ (typically a step-modulated sine wave) 

which   is equivalent to solving  the system as though it were described completely  by a second- 

order partial-differential equation.    It seems plausible to this author that if .I„ were not specified, 

but treated  as the unknown it truly is,    a more general solution might  be obtained which would 

contain ARP and TRAPATT modes as separate possible solutions.    It maybe argued in opposition 



to this view that it is known that JT,   in the one-dimensional case,   is solely a function of time 

and that the assumed time dependence for J• can be arrived at by reasonable physical arguments. 

This is true but not conclusive,   since it is pointed out on page 2 that in the large-signal case 

Eqs. (1),   (2),  and (6) are not equivalent to (in the sense that they cannot be used to derive) Eqs. (1) 

(2),  and (3).    Thus,   assumptions on the form of J_,(t) may omit other physically possible but not 

obvious solutions. 
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APPENDIX 

DERIVATION OF   BASIC EQUATION 

The   basic set of  three linearized,   first-order,   coupled differential equations,   Eqs. (15), 

(16),   and (17),   combine to yield a third-order,   homogeneous differential equation which wc dis- 

play in this  appendix. 

Eqs. (15) and (16) may be written in the form 

U  n. - 0   | V   |p, - CE. = 0      , 134) 
n   1        o'    p' ' 1 1 

1)  p, - a   i V   i n, - CE. = 0 (351 
pM o      n     1 1 

where 

0    =  (iw - I V    !    •£- - a   I V    I ) (36i 
n       J n'    rix on 

p       •' '    p'    3x o'    p 

c = »' I v IN   + 0' !v j P     . (38) 
o     n     o        o      p'    o 

Prom Eqs. (34) and (35) it can be shown that 

(I)   I)    - (V   0   I V   ! | V   I ) n, = C(ju; +  I V   |   TT) E,       , (391 
n   p        o o     n       p       1 p    «x      1 

Tf-  11)   I)    - o   li   [ V   | ! V   I ) + ]—    E,   -  0 (41i 
fix I     n   r> o  o'    n        p < 1 

. E.  =  0 (4 3i 
m/     1 

r'X 
fix   \,,   2 m/ 

where K2 =  (w/l\;   l)2 + 2j<v   (w/l V    I ) - 2ft'J   ,'<    V 
m n •    i)        '    n o  o n 

(401 (1)1)   - « 0   j V   I I V   I ) p, - C(j*> - I V   I  ~-) E, n   p o  o'    n • '    p     r i J n    rix       1 

Tluis,   if Eq. (17),   which we repeat here, 

9E 

IbT  " 7 'Pi-'1!1     • <17> 

is operated on bv I)   I)    — a   0   ! V      ; V    I ,   the result is 
n   p        o  o     n        p 

qC(! V    I   +   I V    I ) 

fix [    n   p o  o     n' '    p 

w Inch expands into 

s|    1(1 V   | ] V   i ) -^  + [ia;(|V      -'V   ; ) +  | V   | IV   | (ft    - li   l|   TT f'x n        p       .2       '• n p '    n   '    p        o        o  '   rix 
| '        Sx 

+ l^2 T ju.'(o      \    I   4-/3   >V      I] - H. («' I V   iN    + 0' ! V   I P   )   E,  - 0   . (42 1 
• o      n op1       t      on     o        o'    p •    o        ) 

When (i   - li and     V    i   -     V    I .   Eq. (42) reduces to the simpler form 
n P 
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